
A GPU Algorithm for Detecting Contextual Outliers

in Multiple Concurrent Data Streams

Abinash Borah
School of Computer Science

University of Oklahoma
Norman, OK, USA

abinashborah@ou.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK, USA

ggruenwald@ou.edu

Eleazar Leal
Department of Computer Science
University of Minnesota Duluth

Duluth, MN, USA
eleal@d.umn.edu

Egawati Panjei
School of Computer Science

University of Oklahoma
Norman, OK, USA

egawati.panjei@ou.edu

Abstract— A data stream is an infinite sequence of data points

generated from a source continuously at a fast rate, which is

characterized by the transiency of the data points, the temporal

relationship among the data points, concept drift, and multi-

dimensionality of data points. Outlier detection in data streams

thus needs to deal with the characteristics of Big Data applications

such as volume, velocity, and variety. The problem of detecting

outliers in multiple concurrent data streams introduces additional

challenges to the problem. In this paper, we propose a parallel

outlier detection technique CODS to detect Contextual Outliers in

multiple concurrent independent multi-dimensional Data Streams

using a Graphics Processing Unit (GPU). The proposed algorithm

addresses all the aforesaid characteristics of data streams. A set of

experiments demonstrates reasonable outlier detection accuracy

and scalability of CODS with the number of data streams.

Keywords—Data Stream, Outlier Detection, Contextual Outlier,

GPU

I. INTRODUCTION

A data point in a dataset that has a significantly different
value compared to the other points in the dataset is called an
outlier [1]. A contextual outlier is a data point whose value
significantly deviates from the rest of the data points specified
by the same context [1]. The context for a data point can be
specified with one or more contextual attributes (s) such as time,
space, etc. Outlier detection is the data mining task of identifying
the outliers in a dataset by capturing their deviation from the
expected behavior of the data points in the set. Outliers are
unavoidable in any data acquirement process due to different
factors [1]. Outlier detection can also be useful in finding
previously unobserved interesting patterns in a dataset [2].

A wide range of applications demands outlier detection in
data streams. A data stream is an infinite sequence of data points
with explicit or implicit timestamps [3]. Examples of
applications that require outlier detection in data streams are
fault detection in an aircraft sensor [4], detection of erroneous
sensor readings in environmental monitoring [5], network
intrusion detection [6], etc.

While dealing with outlier detection in a data stream, the data
volume to be examined is enormous and new data keep arriving
and hence data cannot be stored entirely in memory for
processing [7]. The rate at which real-life data streams are
generated is high. Again, for data stream applications dealing
with multiple data streams, different data streams may have

different schemas [8]. Therefore, the task of mining outliers in
data stream applications essentially deals with Big Data.

In addition to the above challenges pertaining to Big Data
applications, outlier detection in data streams has to deal with
issues such as the transiency of the data points, the temporal
relation among data points, notion of infinity, concept drift, and
multi-dimensionality [7], [9]. Applications such as network
intrusion detection or detection of erroneous sensor readings [7]
demand outlier detection in multiple concurrent data streams. In
such contexts, the time constraints for outlier detection become
even more stringent to deal with.

Despite these challenges, there are few works in the
literature that have adopted parallel processing for outlier
detection in data streams (refer to Section II). Graphics
Processing Units (GPUs) are parallel co-processors that can
support massive parallel computation with high instruction
throughput. The efficacy of GPUs for outlier detection in data
streams has been rarely explored. In this paper, we propose a
parallel outlier detection algorithm for detecting Contextual
Outliers in Data Streams (CODS) that detects contextual outliers
in multiple concurrent independent multi-dimensional data
streams using a GPU. The evaluation of the outlierness of a
streaming data point in an appropriate context is important. For
example, to find outliers in temperature readings generated by a
sensor located at some place, a temperature reading should be
compared with the other temperature readings in the temporal
vicinity. Because an outlier temperature reading at noon can be
an inlier when compared to the temperatures that are not in its
temporal neighborhood, say temperatures of morning or night.
In addition, CODS addresses all the above-mentioned
characteristics of data streams.

The contributions of this paper are the following: 1) We
propose an algorithm, CODS, for detecting contextual outliers
in multiple concurrent independent multi-dimensional data
streams using a GPU, which addresses the issues of data streams
and GPUs; 2) We deal with the issue of scalability in terms of
the number of data streams; 3) We evaluate the performance of
CODS with a set of experiments using real-world and synthetic
datasets.

The rest of this paper is organized as follows: Section II
reviews necessary GPU concepts and related work; Section III
formally defines the problem with the underlying assumptions;
Section IV presents the proposed algorithm CODS; Section V
discusses the results of the performance analysis; and finally,
Section VI provides conclusions and future work.

II. BACKGROUND AND RELATED WORK

In this section, we present the required background material
on GPUs and discuss the related work.

GPUs are highly parallel co-processors installed in most
computers for graphics rendering. It is possible to utilize the
large-scale parallelism of GPUs for general purpose computing.
GPUs are connected to the CPU through a relatively low
throughput interface like PCIe bus. In this paper, we will use
the terminologies of CUDA, an extension to C/C++ for GPU
programming [10]. GPUs execute code functions called kernels
[10], which are called from the CPU. Kernels launch a grid of
simultaneously executing GPU threads, which are grouped into
blocks. GPUs and CPUs have different memory spaces. This
requires sending all input data through the PCIe bus before any
processing can take place in the GPU and sending all output
data from the GPU back to the CPU. GPUs have a hierarchical
memory organization: threads have their own private registers;
threads in a block can cooperate by using block-wide shared
memory, and all threads across different blocks have access to
the slower but much larger global memory.

To adeptly utilize the parallelism of GPUs, it is imperative
to address the research issues of this architecture such as: 1)
efficient use of the fast but limited amount of shared memory
accessible to all the threads in a block; 2) global memory
coalescing, which reduces the contention for the GPU’s global
memory by making consecutive threads access adjacent
memory locations [11]; and 3) minimization of the amount of
communication through the low throughput CPU-GPU
interface.

Numerous works in the literature address the problem of
outlier detection in data streams. Here we discuss related works
relevant to the different aspects of our work.

A typical approach adopted for outlier detection in a data
stream is the use of a count-based or time-based sliding window
[12] to store a subset of the data points in the sliding window
and evaluate the outlierness of the data points currently present
in the window by capturing their deviation from the other data
points currently in the window [13, 14, 15, 16, 17, 18, 19]. The
outlierness of a data point is examined using a distance-based
[13] or density-based approach [20] in these works within a
temporal context specified by a window.

Density-based outlier detection in a data stream has been
also explored in [21, 22, 23]. These works adopt the local
outlier factor [20] for static data to data streams for measuring
the local density of streaming data points from the average
distance to its neighbors. The works in [7, 17, 24] are examples
of other techniques that also use the density-based approach for
outlier detection in a data stream.

A contextual anomaly detection technique for streaming
sensor networks is proposed in [25] which uses the MapReduce
model of parallel computing [26]. The work in [27] proposes a
prediction-based contextual anomaly detection method for
complex time series data.

Only a handful of the existing works performs outlier
detection in multiple multi-dimensional data streams. In [28], a
distance-based algorithm for outlier detection in multiple

related data streams is proposed which processes a set of data
points coming from multiple data streams together and detects
the outliers among them based on their pair-wise distances. The
two-phase algorithm in [29] first uses temporal correlation to
identify outliers in an individual data stream and then uses the
cross-correlations between the data streams to identify
additional outliers. The work in [30] uses the LSHiForest data
structure [31] to find outliers in multiple related multi-
dimensional streams. These techniques, however, do not
address the scalability issue in terms of the number of streams.

Parallel processing has been adopted for outlier detection in
a data stream in [32, 33, 34]. These works implement a variety
of parallel techniques for distance-based outlier detection on the
Apache Flink platform [35]. [36] proposes a GPU-accelerated
outlier detection algorithm for outlier detection in a multi-
dimensional data stream using a kernel density estimation
approach, while [37] proposes two different GPU algorithms
for the problem using kernel density estimation [17] and local
outlier factor [20] respectively. Both these works focus on
exploiting parallelism for outlier detection in a single stream by
maintaining summary statistics from the history data points of
the stream. Therefore, the outlierness of a data point is
evaluated in a global context, and not only in a local temporal
context.

Although the problem of outlier detection in data streams
has been extensively studied in the literature, there has been no
effort towards finding contextual outliers from multiple
concurrent data streams using parallel computing. In this work,
we propose the first GPU based parallel algorithm that
addresses the problem of contextual outlier detection in
multiple concurrent independent multi-dimensional data
streams. We also address the research issues of data stream
outlier detection and GPU in this endeavor.

III. PROBLEM SETTING

We consider that there is a set of 𝑚 concurrent data streams
𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑚} . The 𝑖 -th data point of data stream 𝑆𝑗 is

denoted by 𝑥𝑖
𝑗

. Each 𝑥𝑖
𝑗

is a (𝑑𝑗 + 1) tuple of the form <

𝑎1, 𝑎2,… 𝑎𝑑𝑗 , 𝑡𝑖> such that 𝑑𝑗 ≥ 1, ∀𝑗. Here, 𝑎𝑘’s (1 ≤ 𝑘 ≤ 𝑑𝑗)

are the attributes of the data points of stream 𝑗 , 𝑑𝑗 is the

dimensionality of stream 𝑗 and 𝑡𝑖 is the associated timestamp of

𝑥𝑖
𝑗
(the time when 𝑥𝑖

𝑗
is received from its source for processing).

The 𝑚 data streams have their arrival rates 𝑅1, 𝑅2, … , 𝑅𝑚;
where, 𝑅𝑗 is the arrival rate for data stream 𝑆𝑗 and it defines how

frequently a data point arrives for 𝑆𝑗.

We perform outlier detection using a time-based sliding
window, i.e., a temporal context for outlier detection is
specified by the time-based sliding window. We consider one
time-based sliding window for each stream, i.e., 𝑚 sliding
windows are maintained for the 𝑚 data streams.

The size of a sliding window, 𝜔 , determines that the
window contains data points arriving from a stream in the last
𝜔 time units. 𝜔 is the same for all the 𝑚 streams. Hence,
depending on their arrival rates, different streams may have
different numbers of data points in their respective sliding
windows.

The slide size of a sliding window, 𝜎, determines that when
the window slides, the data points arriving from a stream in the
last 𝜎 time units are added to the window removing the data
points that had arrived in the oldest 𝜎 time units. 𝜎 is again the
same for all the streams. Further, it is considered that the slide
size 𝜎 is greater than the maximum of the arrival rates for the
data streams and the window size 𝜔 is greater than the slide size
𝜎.

IV. PROPOSED ALGORITHM

We now present our proposed GPU algorithm CODS for
detecting contextual outliers within the settings formulated in
the previous section.

A. Overview

CODS starts by transferring the data points arriving during
the first 𝜔 time units from all the streams to the global memory
of GPU (Lines 1-2 of Algorithm 1). The global memory array
S_d is allocated in such a way that it can accommodate all the
points that arrive in 𝜔 time units from all the streams in 𝑆 in
sequence, i.e., first the points in 𝑆1, then the points in 𝑆2, and so
on. To overlap the data transfer and outlier detection kernel’s
execution (once the points in 𝑆1 are transferred to the global
memory of GPU, outlier detection is performed on those while
the points in 𝑆2 are still being transferred to the global memory
of GPU, and so on), we make use of CUDA streams [10] and
for this, a pinned memory [10] buffer is allocated in CPU to
hold the data points from the streams. Before launching the
CUDA operations, the data points from the sliding windows are
copied to this pinned memory buffer. The kernel Detect-
Outliers is then called (Lines 3-4) to find the outliers in each
stream and the outliers among the points arriving during the
latest 𝜎 time units are transferred to the CPU memory (Line 5).
Subsequently, after every 𝜎 time units (Line 6), the data points
from the streams received during the most recent 𝜎 time units
are transferred to the global memory of GPU (Lines 7-8),
outliers are detected in those (Lines 9-10) and detected outliers
are transferred to the CPU memory (Line 11).

procedure CODS (S, R, 𝜔, 𝜎, r, 𝑂𝑢𝑡)

// performs outlier detection in S using the values of A, 𝜔, 𝜎, r

Input: A set of m data streams S = {S1, S2, S3, …, Sm}, their corresponding

arrival rates R = {R1, R2, R3, …, Rm}, sliding window size ω, slide

size σ, neighbor distance r

Output: A set of outliers 𝑂𝑢𝑡 from S

1. Transfer the data points in the sliding windows of the streams from the

2. CPU memory to array S_d in GPU global memory after 𝜔 time units

3. Call kernel Detect-Outliers (S_d, r) which stores the detected outliers in

4. array 𝑂 in GPU memory

5. Transfer the detected outliers 𝑂 to CPU memory and store in set 𝑂𝑢𝑡

6. for each slide of size 𝜎

7. Transfer the data points from the streams received during the most

8. recent 𝜎 time units from CPU memory to array S_d

9. Call kernel Detect-Outliers (S_d, r) which stores the detected outliers

10. in array 𝑂 in GPU memory

11. Transfer the detected outliers 𝑂 to CPU memory and store in set 𝑂𝑢𝑡

12.end for
13.end procedure

Algorithm 1. Pseudo-code of the CODS algorithm

We launch one block of GPU threads to perform outlier
detection in the data points contained in the sliding window for
each stream. To find the outliers among the data points that
arrive from a stream during the latest 𝜎 time units, the kernel

Detect-Outliers works in the following phases: (1) copying all
the data points contained in the sliding window from the global
memory to the shared memory of the thread block; (2) finding
a set of vectors along which the outlierness of the data points is
to be evaluated; (3) approximation of the neighbor density of
the data points contained in the window along each of the
vectors; (4) computation of an outlier score for each data point
along each of the vectors based on the approximated neighbor
densities of all the data points along the respective vector; and
(5) deciding on the outlierness of the data points arriving in the
latest slide from the computed outlier scores. We explain these
tasks performed in the kernel Detect-Outliers (the pseudocode
presented in Algorithm 2) in the remainder of this section.

B. Copy data points from global memory to shared memory

The threads in a block are assigned to copy the data points
of the stream to be processed by the block from the global
memory array S_d to the thread block’s shared memory (Lines
3-4 in Algorithm 2) in such a way that consecutive threads copy
consecutive attributes of the data points in S_d. This assignment
of threads to the attribute values ensures that the global memory
reads performed by the threads coalesce. It also ensures that
shared memory bank conflicts [11] are minimized while
performing the writes to the shared memory by all the threads
in parallel.

C. Finding a set of vectors to evaluate outlierness

The idea of evaluating the outlierness of multidimensional
data points by considering linear combinations of the original
data dimensions is proposed in [7]. This work explains that the
outlierness of the data points may not be revealed by all the
linear combinations and hence it needs to be examined along
different linear combinations. Instead of their idea of using an
evolutionary algorithm for finding an optimal set of linear
combinations of data dimensions, we propose to use a set of
random vectors for the evaluation of outlierness. In this
preliminary work, we choose the principal components
computed from the covariance matrix of the data points
contained in the window as the set of vectors for evaluating the
outlierness of the data points.

After copying the data points of a stream to the shared
memory, the thread block computes the covariance matrix in
parallel (Line 5). Towards this, we first compute the mean
vector of the data points in parallel by using a warp shuffle
function for parallel reduction in CUDA [10] to sum up the
values of each attribute of the data points. The mean vector is
stored in the shared memory array after the data points so that
it is accessible to all the threads. After this, all the threads
subtract the mean vector from each data point in parallel. Once
this centering of the data is done by subtracting the mean vector
from each data point, the covariance matrix is computed by
computing the variances and the covariances between the
attributes by computing the dot product of the column vectors
of the centered data. The computation of these dot products is
again performed in parallel by all the threads in the block using
parallel reduction with the help of a warp shuffle function.
Again, we store the covariance matrix in the same shared
memory array after the mean vector.

After computing the covariance matrix from the centered
data points, the mean vector is added back to the data points to

restore their original values; this operation is performed in
parallel by all the threads. All the threads in the block then work
in parallel to compute the principal components by performing
eigen decomposition of the covariance matrix (Line 6). We use
the QL decomposition of a tridiagonal matrix implemented in
[38] for the eigen decomposition of the covariance matrix. This

kernel Detect-Outliers (S_d, r)

// GPU kernel that performs outlier detection by copying the data points of
 streams from GPU global memory to shared memory of thread block

Input: GPU global memory array S_d containing the data points in the

sliding windows, neighbor distance r

Output: A set of outliers 𝑂

1. 𝑂 ← 𝜑

2. for each data stream 𝑆𝑗 ∈ 𝑆 do in parallel // thread blocks in parallel

3. Copy the current set of data points 𝑋 ⊂ 𝑆𝑗 in parallel using all threads

4. in the block from the array S_d to the block’s shared memory

5. Compute the covariance matrix C from 𝑋 in parallel

6. Compute the set of principal components P from 𝐶 in parallel

7. Copy the set of data points 𝑋 ⊂ 𝑆𝑗 excluding the points received

8. during the least recent 𝜎 time units in parallel from the block’s

9. shared memory to array S_d

10. for each principal component 𝑝𝑖 ∈ 𝑃 do // 1 ≤ 𝑖 ≤ 𝑑𝑗

11. Compute the projected values of the data points in 𝑋 along 𝑝𝑖 in

12. parallel

13. end for

14. for each 𝑝𝑖 ∈ 𝑃 do

15. for the data points 𝑥 ∈ 𝑋 do in parallel

16. Compute data distribution 𝐷(𝑝𝑖) along 𝑝𝑖 using the projected

17. values

18. Compute Neighbor-Density(𝑥) using 𝐷(𝑝𝑖) and 𝑟

19. Compute mean 𝜇 of the Neighbor-Density(𝑥) for 𝑥 ∈ 𝑋

20. Compute Outlier-Score(𝑥) ← 1 – Neighbor-Density(𝑥)/𝜇

21. end for

22. end for

23. for each 𝑝𝑖 ∈ 𝑃 do

24. Compute the standard deviation 𝑠𝑑 of Outlier-Score(𝑥) along 𝑝𝑖

25. in parallel

26. for each 𝑦 ∈ 𝑋 arriving in most recent 𝜎 time unit do in parallel

27. if Outlier-Score(𝑦) > 3 ∗ 𝑠𝑑

28. 𝑂 ← 𝑂 ∪ {𝑦}

29. end if

30. end for

31. end for

32. end for

Algorithm 2. Pseudo-code of the kernel Detect-Outliers

implementation performs an in-place decomposition of the
covariance matrix and replaces the covariance matrix with the
principal components; hence reusing the same shared memory
space to store the principal components. At this point, all the
threads work in parallel to copy the current set of data points
excluding the points received during the least recent 𝜎 time
units (evicted from the sliding window) from the block’s shared
memory to the global memory array S_d (Lines 7-9) creating
space for the new data points that will be transferred next from
the CPU when the sliding window for the stream slides.

D. Neighbor density approximation for the data points

After obtaining the principal components, all the threads of
the block now work in parallel to compute the projected values
of the data points along each of the principal components (Lines
10-13). For this one data point is assigned to one thread for
computing the projected values of that point along each of the
principal components. We store the projected values of the data
points along the principal components in the same shared
memory space where the original attribute values are stored to

avoid requiring additional space in shared memory. Since the
number of data dimensions and number of principal
components are equal, this perfectly meets the requirement to
overwrite the original attribute values for a data point with the
equal number of projected values, one along each principal
component.

Once the projected values of the data points along each of
the principal components are computed, we compute the
distribution of the data points along each of the principal
components (Lines 14-17). We create a fixed number of cells
along one principal component for this purpose by dividing the
range of projected values along that principal component into
equal size intervals and count the number of data points that fall
into each cell in parallel. To do that, the minimum and
maximum of the projected values along the principal
component are computed in parallel using a warp shuffle
function and stored in the shared memory. To count the number
of data points that fall into each cell in parallel, each thread
maintains an array of size equal to the number of cells. Since
the number of cells is specified in the compile-time, the threads
can use their local registers to store this array [10] so long as
the number of cells is within the limit of the number of registers
a thread can have.

The threads then work in parallel to find their local counts
in each cell, which is finally reduced through a series of warp
shuffle functions to find the overall counts of data points in each
cell along the principal component. Once the cell counts are
obtained, the threads work in parallel to approximate the
neighbor density (Line 18) of each of the data points along the
principal component by summing up the counts in the cell
where the data point lies and neighboring cells within the
neighbor distance r. The neighbor density value along the
principal component is stored in the shared memory array
overwriting the projected value along the principal component.
The above process is repeated for each of the principal
components to approximate the neighbor densities of the data
points along each of the principal components.

E. Computation of outlier score

The outlier scores for each of the data points 𝑥 along each
of the principal components are computed (Lines 19-20) from
the approximated neighbor densities of all the data points along
that principal component as: Outlier-Score(𝑥) ← 1 – Neighbor-
Density(𝑥)/𝜇, where 𝜇 is the average of the neighbor densities
of all the data points along that principal component. The
outlier score computation is motivated from the Multi-
granularity Deviation Factor proposed in [39]. Before
computing the outlier score for the data points in parallel, 𝜇 is
computed from the neighbor densities along the principal
component using parallel reduction with warp shuffle. Here
again, we reuse the shared memory space by overwriting the
neighbor density values along the principal components with
the outlier scores along the respective principal components.

F. Deciding the outlierness of data points

After obtaining the outlier scores for all the data points
along each of the principal components, the threads in the block
now work in parallel to decide the outlierness of the data points
arriving in the most recent σ time units. We adopt the widely
used three standard deviations test for outlier detection that

practically separates the rare events from the normal ones [40].
The threads first work in parallel to compute the standard
deviation of the outlier scores of all the data points along a
principal component (Lines 24-25) using parallel reduction
with warp shuffle. Then the computed standard deviation is
used to decide whether a data point received during the most
recent σ time units is an outlier along that principal component
(Lines 26-30). This is repeated for each of the principal
components and a data point is classified as an outlier if it is
found to be an outlier along any of the principal components.

V. PERFORMANCE ANALYSIS

In this section, we describe the experimental setup, datasets,
values of the input parameters for CODS, performance metrics,
and the experimental results obtained.

A. Experimental Setup

The experiments were carried out on an Ubuntu 14.04
workstation with two six-core Intel Xeon E5 2620v2 chips
running at 2.1GHz and 64GB of DDR3 RAM; equipped with
an Nvidia Quadro K5000 GPU. In our simulation model, there
is one base station and multiple data sources, each producing a
data stream. The data sources generate a data point every 5
milliseconds and send it to the base station. The simulation
model is built using OpenMP multithreading and CUDA 10.

B. Datasets

We use four real datasets from the UCI machine learning
repository: Australian sign language (150K records, 22
dimensions) [9], Vicon physical action (200K records, 27
dimensions) [9], KddCup99 (~3.8M records, 11 dimensions)
[36] and Covertype (~498K records, 10 dimensions) [36] and a
set of synthetic data streams (2.5M records, 50 dimensions).

C. Parameters

We use the values listed in Table I for the input parameters
required for CODS with their default values indicated in bold.
We use the small sizes of the sliding window as small window
size produces better accuracy [41]. We use 64 GPU threads per
block to process the small number of data points in a window.

TABLE I. VALUES FOR THE INPUT PARAMETERS

Parameter Name Values

Sliding window size ω (milliseconds) 300, 400, 500, 600, 700

Slide size σ (milliseconds) 250

Neighbor distance r 25

Number of Cells used along a principal

component for density approximation
100

Number of data streams 100, 200, 300, 400, 500

GPU Threads per block 64

D. Performance Metrics

The outlier detection accuracy of CODS is evaluated in
terms of Precision, Recall, and F-Score. A high precision value
indicates low false positives, and a high recall value indicates
that a high percentage of outliers are detected. The F-Score
value gives an accuracy measure that considers both precision
and recall. We also evaluate the average processing time (APT)
in milliseconds required by CODS to process the newly arriving
set of data points from all the streams in each slide.

E. Experimental Results

Table II shows the performance results of CODS obtained
with the default values of the input parameters. The outlier data
points in the Australian sign language dataset have similar
values as the inliers in some dimensions. The projected values
of the outliers along the principal components do not differ
significantly from the inliers and thus do not cause the outliers
to have low neighbor density. This results in the low accuracy
of CODS on this dataset. For the other four datasets, the outliers
and inliers have considerably different values along each
dimension and CODS detects the outliers in these datasets with
high accuracy. The average processing time taken by CODS to
process the newly arriving set of data points from a hundred
streams in each slide is short, between 15 to 70 milliseconds;
this shows the effectiveness of adopting massive parallelism of

GPUs to deal with large volumes of data.

TABLE II. PERFORMANCE RESULTS

Dataset Precision Recall F-Score APT (ms)

Australian sign language 0.59 0.67 0.63 33.5

Vicon physical action 0.95 0.99 0.97 37.8

KddCup99 0.77 0.93 0.84 16.7

Covertype 0.89 0.94 0.91 15.9

Synthetic dataset 0.93 0.96 0.94 70.3

We next discuss the impact of varying the sliding window

size and the number of data streams on the performance of
CODS.

1) Impact of the sliding window size:
The impact of varying the sliding window size on the

datasets is shown in Fig. 1 (a) – (c). Although the impact of
changing the sliding window size on the other datasets is not
substantial due to the uniformly distributed outlier data points
in these data streams, the impact is noticeable on ASL (the
Australian sign language dataset). As the sliding window size
increases, the accuracy measures for ASL degrade due to the
non-uniformly distributed outliers and inliers in this dataset.

(a) (b) (c) (d)

Fig. 1. Parameter Study for CODS

2) Impact of the number of data streams:
To study the impact of the number of concurrent data

streams on the scalability of CODS, we vary the number of data
streams using the Synthetic dataset. The steady increase in the
average processing time per slide in Fig. 1(d) demonstrates the
scalability of CODS with the number of data streams.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a GPU algorithm CODS for
detecting contextual outliers in multiple concurrent
independent multi-dimensional data streams. The preliminary
performance results show the efficacy of our approach for the
fast processing of streaming data points from hundreds of
streams. In future, we plan to develop GPU algorithms to detect
outliers from multiple correlated data streams by exploring the
correlations between the streams.

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation under Grant No. 1302439 and 1302423.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A
Survey,” ACM Computing Surveys, vol. 41, no. 3, 2009.

[2] M. Kontaki, A. Gounaris, A. N. Papadopoulos, K. Tsichlas, and Y.
Manolopoulos, “Efficient and flexible algorithms for monitoring
distance-based outliers over data streams,” Inf. Systems, vol. 55, 2016.

[3] M. Stonebraker, U. Cetintemel, and S. Zdonik, “The 8 requirements of
real-time stream processing,” SIGMOD Rec., vol. 34, no. 4, Dec. 2005.

[4] S. Basu and M. Meckesheimer, “Automatic outlier detection for time
series: an application to sensor data,” Knowledge & Information Systems,
vol. 11, no. 2, 2007.

[5] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli, “The
hitchhiker’s guide to successful wireless sensor network deployments,”
ser. SenSys, 2008.

[6] S. Babu, L. Subramanian, and J. Widom, “A data stream management
system for network traffic management,” in NRDM, 2001.

[7] S. Sadik, and L. Gruenwald, “Research issues in outlier detection for data
streams,” ACM SIGKDD Explorations Newsletter, vol. 15, no. 1, 2014.

[8] W. Wu and L. Gruenwald, "Research issues in mining multiple data
streams," International Workshop on Novel Data, 2010.

[9] S. Sadik, L. Gruenwald, and E. Leal, “In Pursuit of Outliers in Multi-
dimensional Data Streams,” IEEE International Conf. on Big Data,2016.

[10] “CUDA C++ Programming Guide: Cuda Toolkit Documentation,”
NVIDIA Corporation, 2021. [Online]. Available:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/. [Accessed
September 28, 2021].

[11] “CUDA C++ Best Practices Guide,” NVIDIA Corporation, 2021.
[Online]. Available: https://docfs.nvidia.com/cuda/cuda-c-best-
practicesguide/index.html. [Accessed September 28, 2021].

[12] L. Tran, L. Fan, and C. Shahabi, “Distance-based Outlier Detection in
Data Streams,” Proc. of VLDB Endowment. vol. 9, no. 12, 2016.

[13] F. Angiulli and F. Fassetti, “Detecting distance-based outliers in streams
of data,” Proceedings of the Sixteenth ACM Conference on Information
and Knowledge Management, CIKM, 2007.

[14] M. Kontaki, A. Gounaris, A. Papadopoulos, K. Tsichlas, and Y.
Manolopoulos, “Continuous monitoring of distance-based outliers over
data streams,” IEEE 27th International Conf. on Data Engineering, 2011.

[15] L. Cao, D. Yang, Q. Wang, Y. Yu, J. Wang, and E. Rundensteiner,
“Scalable distance-based outlier detection over high-volume data
streams,” IEEE 30th International Conference on Data Engineering, 2014.

[16] S. Yoon, J.G. Lee, and B.S. Lee, “NETS: Extremely Fast Outlier
Detection from a Data Stream via Set-Based Processing,” Proc. of VLDB
Endowment. vol. 12, no. 11, 2019.

[17] X. Qin, L. Cao, E.A. Rundensteiner, and S. Madden, “Scalable Kernel
Density Estimation-based Local Outlier Detection over Large Data
Streams,” Proceedings of the 22nd International Conf. on EDBT, 2019.

[18] S. Yoon, J.G. Lee, and B.S. Lee, “Ultrafast Local Outlier Detection from
a Data Stream with Stationary Region Skipping,” Proceedings of the 26th
ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, 2020.

[19] L. Tran, M.Y. Mun, and C. Shahabi, “Real-Time Distance-Based Outlier
Detection in Data Streams,” Proc. of VLDB Endow., vol. 14, no. 2, 2021.

[20] M. M. Breunig, H.P. Kriegel, R. T. Ng, and J. Sander, “LOF: identifying
density-based local outliers,” ACM International Conference on
Management of Data (SIGMOD), 2000.

[21] D. Pokrajac, A. Lazarevic, and L. J. Latecki, “Incremental local outlier
detection for data streams,” Proc. CIDM, 2007.

[22] M. Salehi, C. Leckie, J. C. Bezdek, T. Vaithianathan, and X. Zhang, “Fast
memory efficient local outlier detection in data streams,” IEEE Trans. On
Knowledge and Data Engineering, vol. 28, no. 12, 2016.

[23] G. S. Na, D. Kim, and H. Yu, “DILOF: Effective and Memory Efficient
Local Outlier Detection in Data Streams,” The 24th ACM SIGKDD
International Conf. on Knowl. Disc. & Data Mining, 2018.

[24] S. Subramaniam et al., “Online outlier detection in sensor data using non-
parametric models,” Proc. of VLDB Endowment, 2006.

[25] M. A. Hayes and M. A. M. Capretz, “Contextual Anomaly Detection in
Big Sensor Data,” IEEE International Congress on Big Data, 2014.

[26] J. Dean, and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,”, Communications of the ACM, vol. 51, issue 1, 2008.

[27] K. Golmohammadi, and O.R. Zaiane, “Time Series Contextual Anomaly
Detection for Detecting Market Manipulation in Stock Market,” IEEE
International Conf. on Data Science and Advanced Analytics, 2015.

[28] Ishida, K., and Kitagawa, H., “Detecting Current Outliers: Continuous
Outlier Detection over Time-Series Data Streams,” International
Conference on Database and Expert Systems Applications, 2008.

[29] S. Sadik, L. Gruenwald, and E. Leal, “Wadjet: Finding Outliers in
Multiple Multi-Dimensional Heterogeneous Data Streams,”, IEEE 34th
International Conference on Data Engineering, 2018.

[30] H. Sun et al., “Fast Anomaly Detection in Multiple Multi-Dimensional
Data Streams,” IEEE International Conference on Big Data, 2019.

[31] X. Zhang et al., “LSHiForest: A generic framework for fast tree isolation
based ensemble anomaly analysis,” IEEE International Conference on
Data Engineering, 2017.

[32] T. Toliopoulos et al., “Parallel Continuous Outlier Mining in Streaming
Data,” IEEE 5th Int. Conf. on Data Science and Advanced Analytics, 2018.

[33] T. Toliopoulos et al., “Continuous outlier mining of streaming data in
flink,” Information Systems, vol. 93, 2020.

[34] T. Toliopoulos et al., “PROUD: PaRallel OUtlier Detection for streams,”
Proc. of the ACM SIGMOD Int. Conf. on Management of Data, 2020.

[35] https://flink.apache.org/ [Accessed September 28, 2021]

[36] C. HewaNadungodage, Y. Xia and J. J. Lee, “GPU-Accelerated Outlier
Detection for Continuous Data Streams,” IEEE International Parallel and
Distributed Processing Symposium, 2016.

[37] K. Yu, W. Shi, and N. Santoro, “Designing a Streaming Algorithm for
Outlier Detection in Data Mining – An Incremental Approach,” Sensors
(Basel), vol. 20, issue 5, 2020.

[38] W.H. Press et al., “Numerical Recipes in C: The Art of Scientific
Computing,” Second edition, Cambridge University Press, 1992.

[39] S. Papadimitriou et al., “Loci: Fast outlier detection using the local
correlation,” IEEE International Conference on Data Engineering, 2003.

[40] V. Barnett and T. Lewis, “Outliers in Statistical Data,” John Wiley & Sons
Inc, 1994.

[41] J. Clark, Z. Liu, and N. Japkowicz, "Adaptive Threshold for Outlier
Detection on Data Streams," IEEE 5th Int. Conf. on DSAA, 2018.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practicesguide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practicesguide/index.html
https://flink.apache.org/

