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Abstract— A data stream is an infinite sequence of data points 

generated from a source continuously at a fast rate, which is 

characterized by the transiency of the data points, the temporal 

relationship among the data points, concept drift, and multi-

dimensionality of data points. Outlier detection in data streams 

thus needs to deal with the characteristics of Big Data applications 

such as volume, velocity, and variety. The problem of detecting 

outliers in multiple concurrent data streams introduces additional 

challenges to the problem. In this paper, we propose a parallel 

outlier detection technique CODS to detect Contextual Outliers in 

multiple concurrent independent multi-dimensional Data Streams 

using a Graphics Processing Unit (GPU). The proposed algorithm 

addresses all the aforesaid characteristics of data streams. A set of 

experiments demonstrates reasonable outlier detection accuracy 

and scalability of CODS with the number of data streams. 

Keywords—Data Stream, Outlier Detection, Contextual Outlier, 

GPU 

I. INTRODUCTION 

A data point in a dataset that has a significantly different 
value compared to the other points in the dataset is called an 
outlier [1]. A contextual outlier is a data point whose value 
significantly deviates from the rest of the data points specified 
by the same context [1]. The context for a data point can be 
specified with one or more contextual attributes (s) such as time, 
space, etc. Outlier detection is the data mining task of identifying 
the outliers in a dataset by capturing their deviation from the 
expected behavior of the data points in the set. Outliers are 
unavoidable in any data acquirement process due to different 
factors [1]. Outlier detection can also be useful in finding 
previously unobserved interesting patterns in a dataset [2]. 

A wide range of applications demands outlier detection in 
data streams. A data stream is an infinite sequence of data points 
with explicit or implicit timestamps [3]. Examples of 
applications that require outlier detection in data streams are 
fault detection in an aircraft sensor [4], detection of erroneous 
sensor readings in environmental monitoring [5], network 
intrusion detection [6], etc. 

While dealing with outlier detection in a data stream, the data 
volume to be examined is enormous and new data keep arriving 
and hence data cannot be stored entirely in memory for 
processing [7]. The rate at which real-life data streams are 
generated is high. Again, for data stream applications dealing 
with multiple data streams, different data streams may have 

different schemas [8]. Therefore, the task of mining outliers in 
data stream applications essentially deals with Big Data. 

In addition to the above challenges pertaining to Big Data 
applications, outlier detection in data streams has to deal with 
issues such as the transiency of the data points, the temporal 
relation among data points, notion of infinity, concept drift, and 
multi-dimensionality [7], [9]. Applications such as network 
intrusion detection or detection of erroneous sensor readings [7] 
demand outlier detection in multiple concurrent data streams. In 
such contexts, the time constraints for outlier detection become 
even more stringent to deal with. 

Despite these challenges, there are few works in the 
literature that have adopted parallel processing for outlier 
detection in data streams (refer to Section II). Graphics 
Processing Units (GPUs) are parallel co-processors that can 
support massive parallel computation with high instruction 
throughput. The efficacy of GPUs for outlier detection in data 
streams has been rarely explored. In this paper, we propose a 
parallel outlier detection algorithm for detecting Contextual 
Outliers in Data Streams (CODS) that detects contextual outliers 
in multiple concurrent independent multi-dimensional data 
streams using a GPU. The evaluation of the outlierness of a 
streaming data point in an appropriate context is important. For 
example, to find outliers in temperature readings generated by a 
sensor located at some place, a temperature reading should be 
compared with the other temperature readings in the temporal 
vicinity. Because an outlier temperature reading at noon can be 
an inlier when compared to the temperatures that are not in its 
temporal neighborhood, say temperatures of morning or night. 
In addition, CODS addresses all the above-mentioned 
characteristics of data streams. 

The contributions of this paper are the following: 1) We 
propose an algorithm, CODS, for detecting contextual outliers 
in multiple concurrent independent multi-dimensional data 
streams using a GPU, which addresses the issues of data streams 
and GPUs; 2) We deal with the issue of scalability in terms of 
the number of data streams; 3) We evaluate the performance of 
CODS with a set of experiments using real-world and synthetic 
datasets.  

The rest of this paper is organized as follows: Section II 
reviews necessary GPU concepts and related work; Section III 
formally defines the problem with the underlying assumptions; 
Section IV presents the proposed algorithm CODS; Section V 
discusses the results of the performance analysis; and finally, 
Section VI provides conclusions and future work. 



II. BACKGROUND AND RELATED WORK 

In this section, we present the required background material 
on GPUs and discuss the related work. 

GPUs are highly parallel co-processors installed in most 
computers for graphics rendering. It is possible to utilize the 
large-scale parallelism of GPUs for general purpose computing. 
GPUs are connected to the CPU through a relatively low 
throughput interface like PCIe bus. In this paper, we will use 
the terminologies of CUDA, an extension to C/C++ for GPU 
programming [10]. GPUs execute code functions called kernels 
[10], which are called from the CPU. Kernels launch a grid of 
simultaneously executing GPU threads, which are grouped into 
blocks. GPUs and CPUs have different memory spaces. This 
requires sending all input data through the PCIe bus before any 
processing can take place in the GPU and sending all output 
data from the GPU back to the CPU. GPUs have a hierarchical 
memory organization: threads have their own private registers; 
threads in a block can cooperate by using block-wide shared 
memory, and all threads across different blocks have access to 
the slower but much larger global memory. 

To adeptly utilize the parallelism of GPUs, it is imperative 
to address the research issues of this architecture such as: 1) 
efficient use of the fast but limited amount of shared memory 
accessible to all the threads in a block; 2) global memory 
coalescing, which reduces the contention for the GPU’s global 
memory by making consecutive threads access adjacent 
memory locations [11]; and 3) minimization of the amount of 
communication through the low throughput CPU-GPU 
interface. 

Numerous works in the literature address the problem of 
outlier detection in data streams. Here we discuss related works 
relevant to the different aspects of our work. 

A typical approach adopted for outlier detection in a data 
stream is the use of a count-based or time-based sliding window 
[12] to store a subset of the data points in the sliding window 
and evaluate the outlierness of the data points currently present 
in the window by capturing their deviation from the other data 
points currently in the window [13, 14, 15, 16, 17, 18, 19]. The 
outlierness of a data point is examined using a distance-based 
[13] or density-based approach [20] in these works within a 
temporal context specified by a window. 

Density-based outlier detection in a data stream has been 
also explored in [21, 22, 23]. These works adopt the local 
outlier factor [20] for static data to data streams for measuring 
the local density of streaming data points from the average 
distance to its neighbors. The works in [7, 17, 24] are examples 
of other techniques that also use the density-based approach for 
outlier detection in a data stream. 

A contextual anomaly detection technique for streaming 
sensor networks is proposed in [25] which uses the MapReduce 
model of parallel computing [26]. The work in [27] proposes a 
prediction-based contextual anomaly detection method for 
complex time series data. 

Only a handful of the existing works performs outlier 
detection in multiple multi-dimensional data streams. In [28], a 
distance-based algorithm for outlier detection in multiple 

related data streams is proposed which processes a set of data 
points coming from multiple data streams together and detects 
the outliers among them based on their pair-wise distances. The 
two-phase algorithm in [29] first uses temporal correlation to 
identify outliers in an individual data stream and then uses the 
cross-correlations between the data streams to identify 
additional outliers. The work in [30] uses the LSHiForest data 
structure [31] to find outliers in multiple related multi-
dimensional streams. These techniques, however, do not 
address the scalability issue in terms of the number of streams. 

Parallel processing has been adopted for outlier detection in 
a data stream in [32, 33, 34]. These works implement a variety 
of parallel techniques for distance-based outlier detection on the 
Apache Flink platform [35]. [36] proposes a GPU-accelerated 
outlier detection algorithm for outlier detection in a multi-
dimensional data stream using a kernel density estimation 
approach, while [37] proposes two different GPU algorithms 
for the problem using kernel density estimation [17] and local 
outlier factor [20] respectively. Both these works focus on 
exploiting parallelism for outlier detection in a single stream by 
maintaining summary statistics from the history data points of 
the stream. Therefore, the outlierness of a data point is 
evaluated in a global context, and not only in a local temporal 
context. 

Although the problem of outlier detection in data streams 
has been extensively studied in the literature, there has been no 
effort towards finding contextual outliers from multiple 
concurrent data streams using parallel computing. In this work, 
we propose the first GPU based parallel algorithm that 
addresses the problem of contextual outlier detection in 
multiple concurrent independent multi-dimensional data 
streams. We also address the research issues of data stream 
outlier detection and GPU in this endeavor. 

III. PROBLEM SETTING 

We consider that there is a set of 𝑚 concurrent data streams 
𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑚} . The 𝑖 -th data point of data stream 𝑆𝑗  is 

denoted by  𝑥𝑖
𝑗

. Each  𝑥𝑖
𝑗

is a (𝑑𝑗 + 1 ) tuple of the form <

𝑎1, 𝑎2,…  𝑎𝑑𝑗 , 𝑡𝑖> such that 𝑑𝑗 ≥ 1, ∀𝑗. Here, 𝑎𝑘’s (1 ≤ 𝑘 ≤ 𝑑𝑗) 

are the attributes of the data points of stream 𝑗 , 𝑑𝑗  is the 

dimensionality of stream 𝑗 and 𝑡𝑖 is the associated timestamp of 

𝑥𝑖
𝑗
(the time when 𝑥𝑖

𝑗
is received from its source for processing). 

The 𝑚 data streams have their arrival rates 𝑅1, 𝑅2, … , 𝑅𝑚; 
where, 𝑅𝑗 is the arrival rate for data stream 𝑆𝑗  and it defines how 

frequently a data point arrives for 𝑆𝑗. 

We perform outlier detection using a time-based sliding 
window, i.e., a temporal context for outlier detection is 
specified by the time-based sliding window. We consider one 
time-based sliding window for each stream, i.e., 𝑚 sliding 
windows are maintained for the 𝑚 data streams. 

The size of a sliding window, 𝜔 , determines that the 
window contains data points arriving from a stream in the last 
𝜔  time units. 𝜔  is the same for all the 𝑚  streams. Hence, 
depending on their arrival rates, different streams may have 
different numbers of data points in their respective sliding 
windows. 



The slide size of a sliding window, 𝜎, determines that when 
the window slides, the data points arriving from a stream in the 
last 𝜎 time units are added to the window removing the data 
points that had arrived in the oldest 𝜎 time units. 𝜎 is again the 
same for all the streams. Further, it is considered that the slide 
size 𝜎 is greater than the maximum of the arrival rates for the 
data streams and the window size 𝜔 is greater than the slide size 
𝜎. 

IV. PROPOSED ALGORITHM 

We now present our proposed GPU algorithm CODS for 
detecting contextual outliers within the settings formulated in 
the previous section. 

A. Overview 

CODS starts by transferring the data points arriving during 
the first 𝜔 time units from all the streams to the global memory 
of GPU (Lines 1-2 of Algorithm 1). The global memory array 
S_d is allocated in such a way that it can accommodate all the 
points that arrive in 𝜔 time units from all the streams in 𝑆 in 
sequence, i.e., first the points in 𝑆1, then the points in 𝑆2, and so 
on. To overlap the data transfer and outlier detection kernel’s 
execution (once the points in 𝑆1 are transferred to the global 
memory of GPU, outlier detection is performed on those while 
the points in 𝑆2 are still being transferred to the global memory 
of GPU, and so on), we make use of CUDA streams [10] and 
for this, a pinned memory [10] buffer is allocated in CPU to 
hold the data points from the streams. Before launching the 
CUDA operations, the data points from the sliding windows are 
copied to this pinned memory buffer. The kernel Detect-
Outliers is then called (Lines 3-4) to find the outliers in each 
stream and the outliers among the points arriving during the 
latest 𝜎 time units are transferred to the CPU memory (Line 5). 
Subsequently, after every 𝜎 time units (Line 6), the data points 
from the streams received during the most recent 𝜎 time units 
are transferred to the global memory of GPU (Lines 7-8), 
outliers are detected in those (Lines 9-10) and detected outliers 
are transferred to the CPU memory (Line 11). 

procedure CODS (S, R, 𝜔, 𝜎, r, 𝑂𝑢𝑡) 

// performs outlier detection in S using the values of A, 𝜔, 𝜎, r  

Input:  A set of m data streams S = {S1, S2, S3, …, Sm}, their corresponding 

arrival rates R = {R1, R2, R3, …, Rm}, sliding window size ω, slide 

size σ, neighbor distance r  

Output: A set of outliers 𝑂𝑢𝑡 from S 

1. Transfer the data points in the sliding windows of the streams from the 

2.     CPU memory to array S_d in GPU global memory after 𝜔 time units 

3. Call kernel Detect-Outliers (S_d, r) which stores the detected outliers in 

4.     array 𝑂 in GPU memory 

5. Transfer the detected outliers 𝑂 to CPU memory and store in set 𝑂𝑢𝑡 

6. for each slide of size 𝜎 

7.      Transfer the data points from the streams received during the most 

8.         recent 𝜎 time units from CPU memory to array S_d 

9.      Call kernel Detect-Outliers (S_d, r) which stores the detected outliers  

10.       in array 𝑂 in GPU memory 

11.    Transfer the detected outliers 𝑂 to CPU memory and store in set 𝑂𝑢𝑡 

12.end for 
13.end procedure 

Algorithm 1. Pseudo-code of the CODS algorithm 

We launch one block of GPU threads to perform outlier 
detection in the data points contained in the sliding window for 
each stream. To find the outliers among the data points that 
arrive from a stream during the latest 𝜎 time units, the kernel 

Detect-Outliers works in the following phases: (1) copying all 
the data points contained in the sliding window from the global 
memory to the shared memory of the thread block; (2) finding 
a set of vectors along which the outlierness of the data points is 
to be evaluated; (3) approximation of the neighbor density of 
the data points contained in the window along each of the 
vectors; (4) computation of an outlier score for each data point 
along each of the vectors based on the approximated neighbor 
densities of all the data points along the respective vector; and 
(5) deciding on the outlierness of the data points arriving in the 
latest slide from the computed outlier scores. We explain these 
tasks performed in the kernel Detect-Outliers (the pseudocode 
presented in Algorithm 2) in the remainder of this section. 

B. Copy data points from global memory to shared memory  

The threads in a block are assigned to copy the data points 
of the stream to be processed by the block from the global 
memory array S_d to the thread block’s shared memory (Lines 
3-4 in Algorithm 2) in such a way that consecutive threads copy 
consecutive attributes of the data points in S_d. This assignment 
of threads to the attribute values ensures that the global memory 
reads performed by the threads coalesce. It also ensures that 
shared memory bank conflicts [11] are minimized while 
performing the writes to the shared memory by all the threads 
in parallel. 

C. Finding a set of vectors to evaluate outlierness 

The idea of evaluating the outlierness of multidimensional 
data points by considering linear combinations of the original 
data dimensions is proposed in [7]. This work explains that the 
outlierness of the data points may not be revealed by all the 
linear combinations and hence it needs to be examined along 
different linear combinations. Instead of their idea of using an 
evolutionary algorithm for finding an optimal set of linear 
combinations of data dimensions, we propose to use a set of 
random vectors for the evaluation of outlierness. In this 
preliminary work, we choose the principal components 
computed from the covariance matrix of the data points 
contained in the window as the set of vectors for evaluating the 
outlierness of the data points. 

After copying the data points of a stream to the shared 
memory, the thread block computes the covariance matrix in 
parallel (Line 5). Towards this, we first compute the mean 
vector of the data points in parallel by using a warp shuffle 
function for parallel reduction in CUDA [10] to sum up the 
values of each attribute of the data points. The mean vector is 
stored in the shared memory array after the data points so that 
it is accessible to all the threads. After this, all the threads 
subtract the mean vector from each data point in parallel. Once 
this centering of the data is done by subtracting the mean vector 
from each data point, the covariance matrix is computed by 
computing the variances and the covariances between the 
attributes by computing the dot product of the column vectors 
of the centered data. The computation of these dot products is 
again performed in parallel by all the threads in the block using 
parallel reduction with the help of a warp shuffle function. 
Again, we store the covariance matrix in the same shared 
memory array after the mean vector. 

After computing the covariance matrix from the centered 
data points, the mean vector is added back to the data points to 



restore their original values; this operation is performed in 
parallel by all the threads. All the threads in the block then work 
in parallel to compute the principal components by performing 
eigen decomposition of the covariance matrix (Line 6). We use 
the QL decomposition of a tridiagonal matrix implemented in 
[38] for the eigen decomposition of the covariance matrix. This 

kernel Detect-Outliers (S_d, r) 

// GPU kernel that performs outlier detection by copying the data points of  
    streams from GPU global memory to shared memory of thread block 

Input:  GPU global memory array S_d containing the data points in the 

sliding windows, neighbor distance r 

Output: A set of outliers 𝑂 

1. 𝑂 ← 𝜑 

2. for each data stream 𝑆𝑗 ∈ 𝑆 do in parallel // thread blocks in parallel 

3.     Copy the current set of data points 𝑋 ⊂ 𝑆𝑗  in parallel using all threads  

4.        in the block from the array S_d to the block’s shared memory 

5.     Compute the covariance matrix C from 𝑋 in parallel 

6.     Compute the set of principal components P from 𝐶 in parallel 

7.     Copy the set of data points 𝑋 ⊂ 𝑆𝑗  excluding the points received 

8.          during the least recent 𝜎 time units in parallel from the block’s 

9.          shared memory to array S_d 

10.   for each principal component 𝑝𝑖 ∈ 𝑃 do // 1 ≤ 𝑖 ≤  𝑑𝑗  

11.        Compute the projected values of the data points in 𝑋 along 𝑝𝑖 in  

12.             parallel 

13.   end for 

14.   for each 𝑝𝑖 ∈ 𝑃 do 

15.          for the data points 𝑥 ∈ 𝑋 do in parallel 

16.               Compute data distribution 𝐷(𝑝𝑖) along 𝑝𝑖 using the projected 

17.                  values 

18.               Compute Neighbor-Density(𝑥) using 𝐷(𝑝𝑖) and 𝑟 

19.               Compute mean 𝜇 of the Neighbor-Density(𝑥) for 𝑥 ∈ 𝑋 

20.               Compute Outlier-Score(𝑥) ← 1 – Neighbor-Density(𝑥)/𝜇 

21.          end for 

22.    end for 

23.    for each 𝑝𝑖 ∈ 𝑃 do 

24.          Compute the standard deviation 𝑠𝑑 of Outlier-Score(𝑥) along 𝑝𝑖  

25.               in parallel 

26.          for each 𝑦 ∈ 𝑋 arriving in most recent 𝜎 time unit do in parallel 

27.               if Outlier-Score(𝑦) > 3 ∗ 𝑠𝑑 

28.                    𝑂 ← 𝑂 ∪ {𝑦} 

29.               end if  

30.          end for 

31.     end for 

32. end for 

Algorithm 2. Pseudo-code of the kernel Detect-Outliers 

implementation performs an in-place decomposition of the 
covariance matrix and replaces the covariance matrix with the 
principal components; hence reusing the same shared memory 
space to store the principal components. At this point, all the 
threads work in parallel to copy the current set of data points 
excluding the points received during the least recent 𝜎  time 
units (evicted from the sliding window) from the block’s shared 
memory to the global memory array S_d (Lines 7-9) creating 
space for the new data points that will be transferred next from 
the CPU when the sliding window for the stream slides. 

D. Neighbor density approximation for the data points 

After obtaining the principal components, all the threads of 
the block now work in parallel to compute the projected values 
of the data points along each of the principal components (Lines 
10-13). For this one data point is assigned to one thread for 
computing the projected values of that point along each of the 
principal components. We store the projected values of the data 
points along the principal components in the same shared 
memory space where the original attribute values are stored to 

avoid requiring additional space in shared memory. Since the 
number of data dimensions and number of principal 
components are equal, this perfectly meets the requirement to 
overwrite the original attribute values for a data point with the 
equal number of projected values, one along each principal 
component. 

Once the projected values of the data points along each of 
the principal components are computed, we compute the 
distribution of the data points along each of the principal 
components (Lines 14-17). We create a fixed number of cells 
along one principal component for this purpose by dividing the 
range of projected values along that principal component into 
equal size intervals and count the number of data points that fall 
into each cell in parallel. To do that, the minimum and 
maximum of the projected values along the principal 
component are computed in parallel using a warp shuffle 
function and stored in the shared memory. To count the number 
of data points that fall into each cell in parallel, each thread 
maintains an array of size equal to the number of cells. Since 
the number of cells is specified in the compile-time, the threads 
can use their local registers to store this array [10] so long as 
the number of cells is within the limit of the number of registers 
a thread can have. 

The threads then work in parallel to find their local counts 
in each cell, which is finally reduced through a series of warp 
shuffle functions to find the overall counts of data points in each 
cell along the principal component. Once the cell counts are 
obtained, the threads work in parallel to approximate the 
neighbor density (Line 18) of each of the data points along the 
principal component by summing up the counts in the cell 
where the data point lies and neighboring cells within the 
neighbor distance r. The neighbor density value along the 
principal component is stored in the shared memory array 
overwriting the projected value along the principal component. 
The above process is repeated for each of the principal 
components to approximate the neighbor densities of the data 
points along each of the principal components. 

E. Computation of outlier score 

The outlier scores for each of the data points 𝑥 along each 
of the principal components are computed (Lines 19-20) from 
the approximated neighbor densities of all the data points along 
that principal component as: Outlier-Score(𝑥) ← 1 – Neighbor-
Density(𝑥)/𝜇, where 𝜇 is the average of the neighbor densities 
of all the data points along that principal component. The 
outlier score computation is motivated from the Multi-
granularity Deviation Factor proposed in [39]. Before 
computing the outlier score for the data points in parallel, 𝜇 is 
computed from the neighbor densities along the principal 
component using parallel reduction with warp shuffle. Here 
again, we reuse the shared memory space by overwriting the 
neighbor density values along the principal components with 
the outlier scores along the respective principal components. 

F. Deciding the outlierness of data points 

After obtaining the outlier scores for all the data points 
along each of the principal components, the threads in the block 
now work in parallel to decide the outlierness of the data points 
arriving in the most recent σ time units. We adopt the widely 
used three standard deviations test for outlier detection that 



practically separates the rare events from the normal ones [40]. 
The threads first work in parallel to compute the standard 
deviation of the outlier scores of all the data points along a 
principal component (Lines 24-25) using parallel reduction 
with warp shuffle. Then the computed standard deviation is 
used to decide whether a data point received during the most 
recent σ time units is an outlier along that principal component 
(Lines 26-30). This is repeated for each of the principal 
components and a data point is classified as an outlier if it is 
found to be an outlier along any of the principal components. 

V. PERFORMANCE ANALYSIS 

In this section, we describe the experimental setup, datasets, 
values of the input parameters for CODS, performance metrics, 
and the experimental results obtained. 

A. Experimental Setup 

The experiments were carried out on an Ubuntu 14.04 
workstation with two six-core Intel Xeon E5 2620v2 chips 
running at 2.1GHz and 64GB of DDR3 RAM; equipped with 
an Nvidia Quadro K5000 GPU. In our simulation model, there 
is one base station and multiple data sources, each producing a 
data stream. The data sources generate a data point every 5 
milliseconds and send it to the base station. The simulation 
model is built using OpenMP multithreading and CUDA 10. 

B. Datasets 

We use four real datasets from the UCI machine learning 
repository: Australian sign language (150K records, 22 
dimensions) [9], Vicon physical action (200K records, 27 
dimensions) [9], KddCup99 (~3.8M records, 11 dimensions) 
[36] and Covertype (~498K records, 10 dimensions) [36] and a 
set of synthetic data streams (2.5M records, 50 dimensions). 

C. Parameters 

We use the values listed in Table I for the input parameters 
required for CODS with their default values indicated in bold. 
We use the small sizes of the sliding window as small window 
size produces better accuracy [41]. We use 64 GPU threads per 
block to process the small number of data points in a window. 

TABLE I.  VALUES FOR THE INPUT PARAMETERS 

Parameter Name Values 

Sliding window size ω (milliseconds) 300, 400, 500, 600, 700  

Slide size σ (milliseconds) 250 

Neighbor distance r 25 

Number of Cells used along a principal 

component for density approximation 
100 

Number of data streams 100, 200, 300, 400, 500 

GPU Threads per block 64 

D. Performance Metrics 

The outlier detection accuracy of CODS is evaluated in 
terms of Precision, Recall, and F-Score. A high precision value 
indicates low false positives, and a high recall value indicates 
that a high percentage of outliers are detected. The F-Score 
value gives an accuracy measure that considers both precision 
and recall. We also evaluate the average processing time (APT) 
in milliseconds required by CODS to process the newly arriving 
set of data points from all the streams in each slide.  

E. Experimental Results 

Table II shows the performance results of CODS obtained 
with the default values of the input parameters. The outlier data 
points in the Australian sign language dataset have similar 
values as the inliers in some dimensions. The projected values 
of the outliers along the principal components do not differ 
significantly from the inliers and thus do not cause the outliers 
to have low neighbor density. This results in the low accuracy 
of CODS on this dataset. For the other four datasets, the outliers 
and inliers have considerably different values along each 
dimension and CODS detects the outliers in these datasets with 
high accuracy. The average processing time taken by CODS to 
process the newly arriving set of data points from a hundred 
streams in each slide is short, between 15 to 70 milliseconds; 
this shows the effectiveness of adopting massive parallelism of  

 
GPUs to deal with large volumes of data. 

TABLE II.  PERFORMANCE RESULTS 

Dataset Precision Recall F-Score APT (ms) 

Australian sign language 0.59 0.67 0.63 33.5 

Vicon physical action 0.95 0.99 0.97 37.8 

KddCup99 0.77 0.93 0.84 16.7 

Covertype 0.89 0.94 0.91 15.9 

Synthetic dataset 0.93 0.96 0.94 70.3 

 
We next discuss the impact of varying the sliding window 

size and the number of data streams on the performance of 
CODS. 

1) Impact of the sliding window size: 
The impact of varying the sliding window size on the 

datasets is shown in Fig. 1 (a) – (c). Although the impact of 
changing the sliding window size on the other datasets is not 
substantial due to the uniformly distributed outlier data points 
in these data streams, the impact is noticeable on ASL (the 
Australian sign language dataset). As the sliding window size 
increases, the accuracy measures for ASL degrade due to the 
non-uniformly distributed outliers and inliers in this dataset. 

 

(a) (b) (c) (d) 

    
Fig. 1. Parameter Study for CODS 



2) Impact of the number of data streams: 
To study the impact of the number of concurrent data 

streams on the scalability of CODS, we vary the number of data 
streams using the Synthetic dataset. The steady increase in the 
average processing time per slide in Fig. 1(d) demonstrates the 
scalability of CODS with the number of data streams. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a GPU algorithm CODS for 
detecting contextual outliers in multiple concurrent 
independent multi-dimensional data streams. The preliminary 
performance results show the efficacy of our approach for the 
fast processing of streaming data points from hundreds of 
streams. In future, we plan to develop GPU algorithms to detect 
outliers from multiple correlated data streams by exploring the 
correlations between the streams. 
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